
A Baseline Method for Compiling Typed Unification Grammars into Context
Free Language Models

Manny Rayner�, John Dowding�, Beth Ann Hockey�

� netdecisions, Wellington House, East Road, Cambridge CB1 1BH, UK
manny.rayner@netdecisions.co.uk

� RIACS, Mail Stop 19–39, NASA Ames Research Center, Moffett Field, CA 94035-1000
�jdowding, bahockey�@riacs.edu

Abstract

This paper presents a minimal enumerative approach to the
problem of compiling typed unification grammars into CFG
language models, a prototype implementation and results of ex-
periments in which it was used to compile some non-trivial uni-
fication grammars. We argue that enumerative methods are con-
siderably more useful than has been previously believed. Also,
the simplicity of enumerative methods makes them a natural
baseline against which to compare alternative approaches.

1. Introduction
Grammar based language models for constraining speech
recognition are particularly attractive as an alternative to sta-
tistical models in domains that lack extensive speech corpora.
For commercial dialogue systems, the case in which there is not
enough speech data to train effective statistical models seems to
be the norm. This lack of data also impacts research domains
that are relatively novel, such as dialogue interfaces to robots.
Given the difficulties involved in using statistical modeling with
limited speech data, we think it is important to investigate ways
in which grammar based models can be efficiently and effec-
tively produced.

Context free grammars (CFGs) can be tedious to write and
difficult to maintain, compared to grammars written in higher
level formalisms such as unification based grammars. For each
rule in the higher level grammar there are likely to be many
rules, very similar to each other, in a comparable CFG. The
higher-level formalism provides a more compact representation
and expresses linguistic dependencies and relations more trans-
parently and explicitly than a corresponding CFG.

Compiling the CFG language model from a grammar writ-
ten in the higher level formalism is one way to produce a CFG
language model effectively while taking advantage of the at-
tractive properties of the higher-level formalism ([1]), and there
have already been several pioneering attempts to write systems
which can compile non-trivial unification grammars into use-
ful CFG grammars [2],[1],[3]. Although interesting, these sys-
tems have some difficulties. Experience has in particular shown
that their characteristics are too unpredictable; apparently small
changes in the input unification grammars can have large effects
in terms of increased compilation times. The compilation time
with these algorithms is unpredictable because they search ex-
tremely large spaces using deductive methods that explore many
paths simultaneously by performing reasoning directly on uni-
fication grammar representations. There is, however, a much

simpler alternative, which we argue has not been adequately
explored: to expand out the unification grammar into a CFG by
non-deterministically instantiating all rules in all possible ways,
and then proceed by manipulating the resulting CFG. We will
refer to method of this kind asenumerative compilation. It is
of course clear that completely naive implementations of enu-
merative compilation will not scale up to substantial grammars.
With a few simple enhancements, however, we have discovered
that these methods are surprisingly powerful.

We present initial results forREGULUS, a prototype imple-
mentation of an enumerative compilation method, which com-
piles typed unification grammars into CFG language models
expressed in Nuance Grammar Specification Language (GSL)
notation [4]. REGULUSdivides the process of compiling a uni-
fication grammar into a CFG into three phases:

Pre-processing: Perform a suitable transformation of the ini-
tial unification grammar, in order to make it easier for
the following stage to process.

Expansion: Expand out the transformed unification grammar
into a CFG by non-deterministically instantiating each
feature in each rule to all of its permitted values.

Filtering: Remove all CFG rules which are irrelevant, in the
sense that they can deleted without changing the lan-
guage generated by the grammar.

2. Representing the rule space
Our starting point is a typed unification-based feature grammar
such that each feature� has a finite range of possible values
������; our goal is to convert this into an equivalent CFG.
A subset of these features will take values that are arbitrary
boolean combinations of the atomic values for the feature. For
example if the feature F has the possible values a, b and c, there
are seven possible values:�, �, �, ���, ���, ��� and�����.
Theseboolean valued features are represented using the method
of Mellish[5], which provides a compact form in which to ex-
press the possible�� � � values for the feature.

While it is conceivable to generate a CFG simply by instan-
tiating each feature in each rule with every consistent value, the
size of the resulting rule space may be prohibitively large. As
pointed out in [2], the problem becomes particularly acute in
rules with many daughters. If each daughter can be expanded in
� ways, and there are� of them, then we have�� ways to
expand the body of the rule. [2] provides as an example a rule
with 8 daughters, each of which has 60 possible instantiations,
leading to��� instantiated rules. At first sight, this implies that



an enumerative strategy has no chance of succeeding on any
substantial grammar.

For these reasons, [2] concluded that it was necessary to
use a deductive approach that performs an analysis to deter-
mine which possible instantiations of rules actually arise. The
advantage of the deductive approach is that it may not be nec-
essary to search the whole space; deductive operations in ef-
fect consider many paths at once, leading to a real search space
that is far smaller than the space of all possible rules. Unfortu-
nately, it is in general impossible to estimate the size of this real
search space for most interesting grammars. The upshot is that
there is no easy way to know how long any given compilation
will take, and practical experience with the deductive approach
does indeed suggest that compilation times are extremely un-
predictable.

However, it is less clear that the enumerative approach re-
ally does lead to an intractably large rule space, once we con-
sider the idea of using grammar transformations to pre-process
the grammar before performing non-deterministic expansion.
We have evaluated two such grammar transformations, each of
which reduces the size of the total rule space while accepting the
same language. The two reductions areboolean valued feature
reduction (BVFR) and singleton variable elimination (SVE).
Table 2 shows the size of the enumerative rule space with and
without these grammar transforms.

The BVFR transform undoes the effect of Mellish’s rep-
resentation [5] by generating multiple grammar rules for each
consistent atomic value of a boolean valued feature. For ex-
ample, if a rule contained a feature	 � � � � � �, then it
would be replaced by 3 rules, one each for	 � �, 	 � �, and
	 � �. That this reduces the size of the total rule space can be
seen by considering a rule which has two daughters, one con-
tain a boolean valued feature of� atomic values, and the other
containing a boolean valued feature of� atomic values. The
number of rule instantions allowed using the technique of [5] is
on the order of�� ��� , while the number of rule instantitations
using atomic values only is on the order of� �� . As can be
seen in Table 2, for one of our sample grammars BVFR reduced
the number of total rules from 1.1x10�� to 5.5x���.

Singleton variable elimination (SVE) has been described
elsewhere [2], so we content ourselves with a brief summary.
The idea is to replace any singleton variables in the daughters
of a grammar rule (so calleddon’t care variables) with a unique
atomic value ’ANY’, and then introduce copies of grammar
rules and lexical items that would have unified with the orig-
inal daughter, with the corresponding feature value in the copy
replaced by ’ANY’. SVE reduces the mulitplicative effect of
combining feature values for features that a grammar rule does
not care about. We use a varient of the technique described in
[2], where, instead of introducing copies of grammar rules and
lexical items, we introduce instead new unit productions deriv-
ing the unifying daughter from the don’t care daughter. As can
be seen in Table 2, for one of our sample grammars SVE re-
duced the number of total rules from 5.5x10� to 29,342.

3. Efficient filtering of CFGs
The CFG produced by the expansion stage is not the final re-
sult, since it generally contains many rules which are irrelevant.
Our experiments suggest that the larger the grammar generated
by the expansion process, the larger the proportion of irrelevant
rules. For the largest grammars we have tried, well over 90% of
the generated rules have turned out to be irrelevant. Filtering is
an essential part of the compilation process, if only for the prac-

tical reason that unfiltered grammars are in general not capable
of compilation by the Nuance grammar compiler.

The standard method for filtering a CFG ([6], pp. 87–90)
has quadratic complexity. However this filtering can be done in
linear-time. A linear time algorithm for performing this task is
outlined below.

The basic idea is to find the set of all CFG categories which
lack support, in the following obvious sense. A category C lacks
support if either i) there are no rules in which C is mother, or
ii) for all rules in which C is mother, at least one daughter lacks
support. The algorithm uses this definition to compute the set
of categories that lack support, starting with the base cases and
working backwards until it reaches a fixed-point.

We build a table called
��
���������
�� that indexes
the rules by the daughter categories. So if� is a category,

��
���������
����� returns the set of rules in which�
is a daughter. This means that rules will be indexed as many
times as they have daughters. If� is the total number of daugh-
ters, 
��
���������
�� can evidently be built in����
time. We also build a table���������
�
��
� which as-
sociates each rule with a boolean value (initially����
), and
another table���������� which initially associates each cat-
egory� with the number of rules in which� is head. Evi-
dently,���������
�
��
� and���������� can also be built
in ���� time. We extract the set of all categories� such that
������������� � �. We assign the variable����
������
to this set.

We now start the main loop. On each pass through the loop,
we do the following:

1. Use
��
���������
�� to find the set of all cat-
egories �� such that�� is the mother of a rule

 with a daughter in����
������, and also such
that ���������
�
��
�
� � ����
. Call this set
�������.

2. Set���������
�
��
�
� � ���
 for each
 found in
(1).

3. Set������������� � �������������� � for each
category in TmpCats.

4. Set����
������ to the subset of������� consisting
of � such that������������� is now equal to zero.

We iterate until we reach a fixed-point.
It is easy to see that the algorithm has complexity����

when we consider that the innermost loop consists of using

��
���������
�� to move backwards from an unsupported
daughter category to one of its mothers, removing support from
the relevant rule. Each rule can at most be accessed in this way
as many times as it has daughters, and thus the innermost loop
can only be traversed at most a total of� times. This linear-time
result is not surprising, since this filtering problem is equivalent
to the problem of determining satisfiability of a Horn theory, a
problem for which Dowling and Gallier [7] have given a linear-
time algorithm.

4. The REGULUS compiler
REGULUS is a prototype system that implements the enumera-
tive compilation method. It is written in SICStus Prolog, and
compiles unification grammars written in an extended version
of Definite Clause Grammar into annotated CFG grammars
written in Nuance Grammar Specification Language (GSL; [4]).
A resulting GSL grammar can be compiled into a Nuance recog-
nition package using thenuance-compile utility. The REG-
ULUS notation, which is closely based on the notation used in



feature_value_space(num_value, [[sing, plur]]).
feature(num, num_value)
category(sigma, [gsem]).
category(np, [sem, num]).
category(spec, [sem, num]).
category(n, [sem, num]).
top_level_category(sigma).

sigma:[gsem=[value=S]] --> np:[sem=S].

np:[sem=[spec=S, n=N], num=Num] -->
spec:[sem=S, num=Num], n:[sem=N, num=Num].

spec:[sem=the, num=(sing\/plur)] --> the.
spec:[sem=a, num=sing] --> a.
spec:[sem=2, num=plur] --> two.
n:[sem=dog, num=sing] --> dog.
n:[sem=dog, num=plur] --> dogs.

Figure 1: Toy REGULUSgrammar for noun-phrases

the Gemini system [1], is illustrated by the minimal example
grammar in Figure 1, which can accept a few NPs like “the dog”
or “two dogs”; this compiles into the GSL grammar shown in
Figure 2.

The initial feature value space declaration speci-
fies that the range of possible values in the feature-space
num value is the pair�sing, plur�, and the following
feature declaration specifies thatnum is a feature taking val-
ues in the spacenum value. The next four declarations spec-
ify the category symbolssigma, np, spec andn, with their
associated features. The distinguished featuressem andgsem
translate into Nuance semantic annotations in a straightforward
way; as can be seen by comparing Figures 1 and 2,sem features
translate into localreturn constructions, whilegsem features
translate into global slot-filling. Thetop level category
declaration specifies a start-symbol for the grammar.

The remainder of the grammar comprises the actual rule-
set. Thenum feature is used to enforce agreement between
SPEC and N (thus for example blocking NPs like “*a dogs”);
this is realised in the compiled GSL form as different singular
and plural versions of each rule. Note the disjunctive feature
value fornum on the lexical entry for “the”, which can be either
sing or plur; the formalism allows arbitrary Boolean con-
straints on features. Note also the first and second rules in the
compiled grammar, where the non-terminalNP ANY (“ NP with
ANY value for thenum feature”) has been generated by the SVE
transform described in Section 2.

5. Empirical results
This section presents results of a series of experiments in which
we compiled several different versions of a non-trivial Swedish
unification grammar into CFG language models. Tests were car-
ried out using bothREGULUSand Gemini [1], in order to be able
to compareREGULUS with an established system. The gram-
mars were originally written inREGULUSformat, and automat-
ically translated into Gemini notation using a simple Prolog-
based tool.

The Swedish grammars used for the test came from the Ad-
vanced House project [8], and define a fairly rich command and
query vocabulary for a set of devices installed at the Telia Vi-

SIGMA NP_ANY:v_0 { < value $v_0 > }

NP_ANY [
( NP_PLUR:v_0 ) {return( $v_0 )}
( NP_SING:v_0 ) {return( $v_0 )}]

NP_PLUR [
( SPEC_PLUR:v_0 N_PLUR:v_1 )

{return([< spec $v_0 > < n $v_1 >])}}]

NP_SING [
( SPEC_SING:v_0 N_SING:v_1 )

{return([< spec $v_0 > < n $v_1 >])}]

SPEC_PLUR [ two {return( 2 )}
the {return( the )} ]

SPEC_SING [ a {return( a )}
the {return( the )} ]

N_SING [ dog {return( dog )} ]

N_PLUR [ dogs {return( dog )} ]

Figure 2: Compiled GSL version of toy grammar

sion Center, Stockholm. The devices are controlled through
a LonWorks network, and comprise ceiling lights with on/off
switches, dimmer lights, spotlights, heaters, and light and tem-
perature sensors. All versions of the grammar include coverage
of commands (“T¨and lampan i k¨oket tack”[Switch on the light
in the kitchen please], Y-N and WH-questions (“̈Ar lampan tänd
i köket?” [Is the lamp switched on in the kitchen?], “Finns det
någon lampa i hallen?”[Is there any light in the hall?], “Vilka
lampor lyser?” [Which lights are on?]), conjunction (“Tänd
lamporna i TV-rummet och i flickrummet”[Switch on the lights
in the TV room and in the girl’s room], pronouns (“Sl¨ack dem
igen” [Switch them off again]), and ellipsis (“Tänd lampan i
flickrummet... och s˚a lampan i allrummet”[Switch on the light
in the girl’s room... and then the light in the living room]).

The full grammar is divided up into several pieces, with the
separation being carried out in such a way that each type of de-
vice is associated with the specific extra linguistic knowledge
needed for its control and query vocabulary. The four gram-
mars used in this paper are composed of these pieces and bear
the following relationship to each other:Basic � BasicDim �
AllLights � Full.

Table 1 presents statistics about these four grammars, fol-
lowing which Table 2 summarises the sizes of the various search
spaces. As can be seen, the use of the BVFR and SVE trans-
forms greatly reduces the size of each search space. The main
reason for the increase in the size of the spaces as more compo-
nents are added is not the larger number of grammar rules and
lexicon entries, but rather the increase in the size of the feature
spaces as new semantic types of object are introduced.

The following two tables present quantitative results for
running the two compilers on each of the grammars. (Times re-
fer to SICStus 3.8.4 on a Sun Ultra 10 300 MHz). Table 3 gives
the figures forREGULUS, and Table 4 for Gemini. Note that
compilation time per expanded CFG rule forREGULUS stays
almost constant as the size of the enumerative search space
increases, confirming that the algorithms are indeed close to



Version Rules Lex Largest Spaces
Basic 45 116 4, 3, 3, 3, 3
BasicDim 59 184 6, 6, 6, 6, 4
AllLights 62 197 7, 7, 7, 7, 4
Full 64 201 9, 9, 9, 9, 4

Table 1: Statistics for four versions of the Swedish Advanced
House grammar. “Rules” = number ofREGULUS grammar
rules; “Lex” = number ofREGULUS lexical entries; “Largest
Spaces” = sizes of the five largest feature spaces.

Version Total Rule +BVFR +SVE
Space

Basic 3.84x10� 7.04x10� 2.46x10�

BasicDim 2.51x10�� 1.09x10� 8.56x10�

AllLights 4.18x10�� 2.01x10� 1.10x10�

Full 1.08x10�� 5.46x10� 1.70x10�

Table 2: Sizes of rule search spaces for four versions of the
Swedish Advanced House grammar as output undergoes the
BVFR transform followed by the SVE transform.

linear-time.
Table 5 compares recognition results using models com-

piled by Regulus and Gemini from the full Swedish AH gram-
mar. Tests were run on the 728 utterances from the AH corpus
[8] that were inside grammar coverage.

6. Conclusions
We have presented a minimal enumerative approach to the prob-
lem of compiling typed unification grammars into CFG lan-
guage models, a prototype implementation in the form of the
REGULUSsystem, and the results of experiments in whichREG-
ULUS was used to compile some non-trivial unification gram-
mars. Our overall impression is that enumerative methods are
considerably more useful than has been previously believed,
and may well form a viable alterative to sophisticated deduc-
tive methods. In particular, enumerative methods have clearly
defined complexity characteristics, making it easy to produce a
rapid estimate of the time needed to compile a given unification
grammar into a CFG.

Irrespective of the final verdict concerning the choice be-
tween enumerative and deductive methods, the extreme sim-
plicity of enumerative methods makes them a natural baseline
against which to compare alternative approaches; ability to con-
sistently outscore a well-engineered enumerative method lends

Version Time Time/rule Rules
Expand Filter

Basic 1.3 0.23 0.05 498
BasicDim 5.1 0.23 0.05 916
AllLights 6.7 0.24 0.05 1240
Full 10.8 0.26 0.05 1801

Table 3: Figures forREGULUScompilation of four versions of
the Swedish Advanced House grammar. “Time” = total compi-
lation time in seconds; “Time/rule” = time per expanded CFG
rule for each phase in msecs/rule; “Expand” = expansion phase;
“Filter” = filtering phase; “Rules” = number of CFG rules in
final GSL grammar.

Version Time Rules
Basic 2.4 474
BasicDim 3.6 712
AllLights 10.8 1137
Full 14.3 1336

Table 4: Figures for Gemini compilation of four versions of the
Swedish Advanced House grammar. “Time” = total compila-
tion time in seconds; “Rules” = number of CFG rules in final
GSL grammar.

WER(%) SER(%) xRT
Regulus 8.64 14.70 0.257
Gemini 8.31 14.29 0.209

Table 5: Regulus vs Gemini recognition results (word and sen-
tence error rates) on 728 utterances

empirical substance to claims about the utility of more sophis-
ticated ideas. Our current plan is to continue our programme
of further developingREGULUSand comparing its performance
with that of the deductive Gemini system; in particular, we
should soon be in a position to experiment with usingREGU-
LUS to compile some of the large grammars developed under
the Gemini projects. We hope to present the results of these
experiments in due course.

7. References
[1] J. Dowding, M. Gawron, D. Appelt, L. Cherny, R. Moore,

and D. Moran, “Gemini: A natural language system for
spoken language understanding,” inProceedings of the
Thirty-First Annual Meeting of the Association for Com-
putational Linguistics, 1993.

[2] R. Moore, “Using natural language knowledge sources in
speech recognition,” inProceedings of the NATO Advanced
Studies Institute, 1998.

[3] B. Kiefer and H. Krieger, “A context-free approximation
of head-driven phrase structure grammar,” inProceedings
of the 6th International Workshop on Parsing Technologies,
2000, pp. 135–146.

[4] Nuance Communications,Nuance Speech Recognition Sys-
tem Developer’s Manual version 6.2, 1380 Willow Road,
Menlo Park, CA 94025, 1999.

[5] C. Mellish, “Implementing Systemic Classification by Uni-
fication,” Computational Linguistics, vol. 14, no. 1, pp.
40–51, 1988.

[6] J.E. Hopcroft and J.D. Ullman,Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley,
Addison-Wesley, Reading, Massachusetts, 1979.

[7] William F. Dowling and Jean H. Gallier, “Linear-time al-
gorithms for testing the satisfiability of propositional horn
formulae,” The Journal of Logic Programming, vol. 1, no.
3, pp. 267–284, 1984.

[8] M. Rayner, G. Gorrell, B.A. Hockey, J. Dowding, and
J. Boye, “Do cfg based language models need agreement
constraints?,” inProceedings of 2nd NAACL, 2001.


